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Abstract 

In the domain of oil exploration, geostatistical methods aim at simulating petrophysical 
properties in a 3D grid model of reservoir. Generally, only a small amount of cells are 
populated with properties. Roughly speaking, the question is: which properties to give to 
cell c, knowing the properties of n cells at a given distance from c? Obviously, the popula-
tion of the whole reservoir must be computed while respecting the spatial correlation dis-
tances of properties. Thus, computing of these correlation distances is a key feature of the 
geostatistical simulations.  

In the classical geostatistical simulation workflow, the evaluation of the correlation dis-
tance is imprecise. Indeed, they are computed in a Cartesian simulation space which is not 
representative of the geometry of the reservoir. This induces major deformations in the final 
generated petrophysical properties. 

We propose a new methodology based on isometric flattening of sub-surface models. 
Thanks to the flattening, we accurately reposition the initial populated cells in the simula-
tion space, before computing the correlation distances. In this paper, we introduce our dif-
ferent flattening algorithms depending on the deposit mode of the sub-surface model and 
present some results. 

1. Introduction 

The method presented in this article is concerned with the domain of oil 
exploration. More particularly, we focus on an important phase of oil res-
ervoir characterization: populating lithostratigraphic units represented by a 
fine stratigraphic grid (see Fig. 1) with rock properties, for instance litho-
facies (types of rock), porosity or permeability. Properties are assigned to 
the center of the cells. 
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Fig. 1. Reservoir characterization workflow 

An oil reservoir is a portion of the sub-surface of the geographic space 
which looks like a multilayered rock plate more or less bent and torn into 
pieces (see Fig. 2). The usual dimensions are: 
• Total thickness of the reservoir: from tens to a few hundred meters; 
• Total thickness of a lithostratigraphic unit: some tens of meter (typi-

cally 30 m); 
• Horizontal extent: a few tens of kilometers (typically 10 x 10 km²). 

After the sedimentation period, the lithostratigraphic units are broken 
and distorted by tectonic events.  This geological process creates geologi-
cal "faults" which are tearing these stratigraphic units and their upper and 
lower limits.  

  

Fig. 2.  A reservoir represented in the geographical space composed of 5 
lithostratigraphic units. Each unit has its own geometry and deposit mode 

Our work is part of the geological modeling of the reservoir. The geo-
metric description of the reservoir in the geographic space is embedded 
within a 3D grid composed of different layers. Each lithostratigraphic unit 
is a subset of these gridded layers (which upper and respectively lower 
limits are called top and bottom horizons respectively). The average cell 
dimension is about 25 m x 25 m wide and 0,3 m thick. 

Another input is coming from drilled wells data in the geographic space. 
Lithofacies and petrophysical properties as porosity and permeability are 
measured along the well trajectory. These data are assigned to every cell of 
the grid which intersects a well trajectory. At this step, just a very small 
number of cells are populated. Geostatistical simulations are used in order 
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to populate all remaining cells (representing the major part of the grid) 
with respect to the geological constraints.  

(a)  (b)  

Fig. 3. Classical workflow. (a) The geographic space. (b) The simulation space 

The classical geostatistical simulation workflow is illustrated in Fig. 3. 
In the geographic layer of Fig. 3(a), two cells are crossed by a well. These 
ones are the only populated cells. The petrophysical properties are com-
puted in the regular Cartesian grid of Fig. 3(b). In this simulation space, 
the dimensions of the cells are the average dimensions di, dj, and dk of the 
geographic cells, and the number of cells remains same: ni x nj x nk of 
cells.  

The computing of the correlation distances between wells (the influence 
distances of geological measures between each other) is a decisive simula-
tion step. Classically, the wells are discretized in the geographic space. 
Each cell crossed by a well becomes a well cell populated with the corre-
sponding well measure. Nevertheless, the correlation distances are com-
puted in the simulation space. Consequently, they are not accurate. In our 
example, because of the fold in the geographic grid, we have d >> d’.  

Moreover, the simulated properties are deformed when, at the end, they 
are transferred cell to cell from the simulation space grid into the geo-
graphic space grid. Here, the spherical properties on the simulation space 
grid become elliptic when mapped back into the geographic space grid.  

Thus, depending on the deformation degree of the lithostratigraphic 
units in the geographic space, significant errors may be introduced in the 
geostatistical simulation. This lack of accuracy has prompted us to work 
on and devise a new methodology in order to increase the reliability of the 
parameters required by the geostatistical simulators. 

(a)  (b)  

(c)  (d)  
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Fig. 4. Deposit modes. (a) Parallel to bottom. (b) Parallel to top. (c) Parallel to one 
inner limit. (d) Proportional  

Our methodology is based on an “isometric” flattening of the studied 
lithostratigraphic units in order to have a better estimation of the correla-
tion distances between wells. Our flattening process is optimal in the rea-
sonable assumption of thin lithostratigraphic units. Thanks to this flatten-
ing process, the well trajectories are accurately repositioned in the 
simulation space. In other respects, it is commonly known that there is not 
a unique way to flatten a non developable layer isometrically. We propose 
in this paper two flattening methods driven by the deposit modes of sedi-
mentation: the parallel deposit mode and the proportional deposit mode 
(see Fig. 4). 

Our paper is organized as follows. Our whole flattening methodology is 
presented in section 2. In section 3 and 4, we respectively detail the flatten-
ing process in the case of the parallel and proportional deposit modes. Be-
fore concluding, to illustrate our flattening-based methodology, we present 
in section 5 some results of actual lithostratigraphic unit populating. 

2. Our flattening methodology 

Our flattening methodology improves the precision of the geostatistical 
methods. Indeed, the simulation of petrophysical properties is computed in 
a flat simulation space where the well trajectories are repositioned. Thus, 
accurate correlation distances between wells are easily computed. 
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Fig. 5. The flattening methodology 

Our flattening methodology is illustrated in Fig. 5. The inputs consist of 
one thin lithostratigraphic unit in the geographic space (represented with a 
grid) equipped with some well trajectories. Five steps are required to popu-
late this unit with some geological properties:   
• step 1: isometric flattening of the lithostratigraphic unit; 
• step 2: repositioning of the well trajectory in the simulation space; 
• step 3: constitution of a bounding regular Cartesian grid and geostatisti-

cal simulation of petrophysical properties; 
• step 4: mapping of the simulated properties on the flattened unit; 
• step 5: transfer of the properties in the geographic space. 

The steps are detailed in the followings. In Fig. 5, we supposed that the 
layers are parallel to the bottom of the unit (see Fig. 4(a)). The methodol-
ogy is identical in the case of a proportional deposit mode. 

a) Step 1: flattening of the lithostratigraphic unit 

The input lithostratigraphic unit is modeled with a 3D line support grid 
(see Fig. 10(a)). Such a grid is constituted with one surface (which is gen-
erally the bottom of the grid) where each vertex is attached to a coordline 
(illustrated with arrows). Some nodes are distributed along each coordline 
and every coordlines have the same number of nodes. The combination of 
the surface and coordlines represents an (i,j,k) cell partition of the space. 

 
Fig. 6. Vertical cut of a grid 

A line support representation of the example unit is illustrated in Fig. 6. 
Here, only a 2D cut is represented (all of the cells have the same j index). 
Along faults (represented in red), a same node can be split in several geo-
metric vertices. For instance, the two black dots of the figure represent two 
vertices which are associated to a same node n. The line support structure 
allows ones to represent such split nodes. 
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In our 3D grids, each layer has the same number of cells. Some of them 
are not related to any geological data, for instance in an eroded layer. In 
order to preserve the regularity, a so-called Actnum property is associated 
to each grid cell. This property indicates whether a cell is active. For ex-
ample, as cells c0, c1, c2 and c3 are not related to geological data, they are 
inactive. 

The volume flattening of the unit is based on the isometric unfolding of 
one are two reference surfaces (one for the parallel deposit mode or two 
for the proportional one). First, we have to extract the reference surfaces 
from the grid. In our example, it is the l0 limit of the unit. For that, we use 
the extraction algorithm previously introduced in [ECMOR]. This algo-
rithm preserves the structure of the unit limits. Thus, there exists a corre-
spondence between the grid nodes and the associated geometric vertices in 
the extracted surfaces. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Unfolding of a surface. (a) A folded surface. (b) Fault lips correspondence. 
(c) Corresponding unfolded surface with fault lips sticking 

The unfolding is computed with an extension of the [APLAT] software. 
A specific code associates horizon and fault contacts separated during tec-
tonic periods. Intuitively, the isometric unfolding works in the following 
way: from a 3D folded surface, we compute an unfolded plane surface in 
which the deformations are minimal. The criterion chosen is a minimiza-
tion of the elastic deformation tensor. During the deformation, all z coordi-
nates are computed to obtain a plane surface. Horizons and faults contacts 
are then put in correspondences and smoothed. The Fig. 7 illustrates the 
result of the isometric unfolding of a surface. We are preparing another 
publication dedicated to the isometric unfolding of extracted surfaces.  

After the unfolding of the reference surface, the whole unit is isometri-
cally deformed by conserving the topology of the initial geographic unit. 
Moreover, the isometric unfolding algorithm ensures that deformations be-
tween the geometric space and the simulation space are minimal. The de-
formation algorithms for both parallel and proportional deposit modes are 
detailed in section 3 and 4.  
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b) Step 2: wells trajectory repositioning 

There exists a complete correspondence between the structure of the ini-
tial lithostratigraphic grid and the structure of the flattened grid. Indeed, 
our flattening process preserves the topology. Starting from the trajectory 
of the well, we can calculate the barycentric coordinates of the well meas-
urements in each crossed cell of the original lithostratigraphic grid. Then, 
thanks to the correspondence, we replace these well measurements in each 
corresponding cell of the flattened grid and thus obtain there coordinates in 
the simulation space. 

c) Step 3: geostatistical population of the regular Cartesian 
grid  

Thanks to the repositioning of wells in the simulation space, the correla-
tion distances between wells are easily computed. They allow ones to con-
stitute the variogram models required by the geostatistical simulation. We 
then create a regular Cartesian grid which bound the flattened grid. The pe-
trophysical properties are simulated in this new grid. Here, the discretiza-
tions along the i, j and k axes are regular. The number of cells along the 
axes is not necessary the same than in the geographic lithostratigraphic 
unit. The result of the geostatistical simulation is illustrated with the grey 
tone attributed to each cell of the regular Cartesian grid. 

d) Step 4 and 5: mapping and transfer of properties 

In the last two steps, we plug back the simulated petrophysical proper-
ties in the geographic space. In step 4, we map the properties from the reg-
ular Cartesian grid to the flattened grid. For each cell of the flattened grid, 
we compute its center and then compute in which cell of the Cartesian grid 
it is located. Then, the value of the regular Cartesian grid cell is copied in 
the flattened cell. Let us notice that when several Cartesian grid cells cor-
respond to a unique flattened cell, an interpolation of these Cartesian cell 
values may be use to obtain a more accurate results. 

The step 5 consists in copying the properties of the flattened grid in the 
lithostratigraphic unit. A simple cell by cell copy is sufficient as the flat-
tened and geographic grids have the same topology. 
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3. Parallel volume flattening method 

In this section, we present our parallel volume flattening method (a 
more detailed presentation is proposed in [ECMOR]). This case corre-
sponds to the parallel deposit mode of Fig. 4: every limits of the consid-
ered unit are parallel to one reference surface. This reference surface may 
be the bottom one, the top one or an inner limit of the unit. 

 
Fig. 8. The parallel volume flattening algorithm 

 The isometric unfolding of the reference surface plays a decisive role in 
the flattening process. Roughly speaking, it provides a geometric transfor-
mation which allows one to straighten every limit and then to deform the 
whole lithostratigraphic unit. Here is the general algorithm of the parallel 
volume flattening (the different steps are illustrated in Fig. 8): 
• step 1: extraction and triangulation of the reference surface (see 

[ECMOR]); 
• step 2: isometric unfolding of the reference surface (see section 2.a); 
• step 3: deformation of the whole lithostratigraphic volume. 

Deformation of the lithostratigraphic volume 

We need to flatten all layers included in the stratigraphic unit. For that, 
layers included between bottom and top limits are straightened by consid-
ering the isometric unfolding of the reference surface.  

(a)  (b)  

Fig. 9. Computing of a deformation for each vertex of the reference surface. (a) A 
folded reference surface. (b) Corresponding unfolded surface. 

A deformation is computed for each vertices of the reference surface. 
For each vertex, two coordinate bases are defined. The one with regard to 
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the folded surface (represented with plain arrows in Fig. 9(a)) and the other 
one with regard to the unfolded surface (see the doted arrows).  A defor-
mation is the operation which transforms a base from the geographic space 
to the simulation space.   

(a)  (b)  

Fig. 10. Application of the deformation on each coordline. (a) A parallel unit in 
the geographic space. (b) Corresponding unit in the simulation space. 

As shown in Fig. 10, the deformations are then applied iteratively along 
all of the coordlines. Our algorithm uses the correspondence between the 
reference surface and each coordline. It is thus necessary to ensure that 
every coordline corresponds strictly to one vertex of the reference surface. 
For this purpose, the horizons and faults contacts must correctly coincide 
and the removing of surface edges (for instance to simplify triangular 
meshes) must not remove required coordinates. The surface extraction and 
triangulation of surface proposed in [ECMOR] satisfy these consistency 
constraints. 

Along faults, our method can produce discontinuities during the volume 
deformation. In [ECMOR], a process is provided in order to put fault lips 
in correspondence when the deformation is applied on the coordlines. 

4. Proportional volume flattening method 

In this section, we introduce our proportional volume flattening method. 
It corresponds to the proportional deposit mode of one lithostratigraphic 
unit. Here, the geometry of every inner limit of the unit is given by inter-
polating the geometry of top and bottom limits. Thus, two reference sur-
faces are required: the top and bottom limits of the unit. 
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Fig. 11. The proportional volume flattening algorithm 

The general algorithm of the proportional volume flattening is analo-
gous to the parallel one. Nevertheless, an additional step is required in or-
der to adjust the unfolded reference surfaces in space: 
• step 1: extraction and triangulation of the top and bottom reference sur-

faces (see [ECMOR]); 
• step 2: isometric unfolding of the reference surfaces (see section 2.a); 
• step 2bis: adjustment of the resulting unfolded reference surfaces; 
• step 3: deformation of the whole lithostratigraphic volume. 

a) Adjustment of the unfolded reference surfaces 

The flatten volume resulting from the proportional method is obtained 
by interpolating the geometry of the reference surfaces. Thus, the position 
of the two unfolded surfaces greatly affects the result.  

(a)  (b)  (c)  

Fig. 12. Unfolded surfaces displacement. (a) Displacement of unfolded surfaces. 
(b) Twisted flattened volume. (c) Straight flatten volume 

The [APLAT] isometric unfolding algorithm does not provide any con-
trol on the position of the output surfaces. For example, in Fig. 12(a), a 
displacement exists between two unfolded surfaces. The Fig. 12(b) dis-
plays a result of the proportional flattening method when the adjustment 
step 2bis is not processed. We observe a twist of the deposit model.  
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We propose an algorithm to avoid this symptomatic behaviour. For that, 
we compute the translation and rotation making the two unfolded surfaces 
superposable. Intuitively, we obtain these transformations by minimizing 
the distance between each pair of unfolded surfaces. 

Choosing minimization support nodes 

First, we choose two sets of support nodes: one in the bottom and an-
other one in the top. These sets are such that for each node of a given set, 
there exists a corresponding node in the other set, a node of the opposite 
limit which comes from the same coordline. The choice of these support 
nodes is decisive for the robustness of our algorithm. A support node must 
satisfy the following conditions: 
• condition 1: neither itself nor its corresponding node is adjacent to an 

inactivated cell (see section 2.a); 
• condition 2: it is not located on fault. 

These two conditions ensure that each support node has exactly one 
geometric position. Indeed, only the fault nodes and nodes adjacent to an 
inactivated cell may be associated to several geometric positions. In prac-
tice, it is not mandatory to take into account every node satisfying the pre-
vious conditions and sets of about ten support nodes are sufficient. 

(a)  (b)  

Fig. 13. Support nodes conditions. (a) A top limit. (b) The support nodes 

An example is given in Fig. 13. The top limit of one lithostratigraphic 
unit is displayed in Fig. 13(a). In this figure, the activated cells are repre-
sented in white. In Fig. 13(b) the red region represents the corresponding 
support nodes. The nodes of the green regions do not satisfy condition 1 
while the ones of the purple regions do not satisfy condition 2.  

Readjustment algorithm 

We first adjust the unfolded top on the unfolded bottom (the unfolded 
bottom remains in position). We start by computing the two sets of corre-
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sponding support nodes. By using these nodes, we then minimize the dis-
tances between the two unfolded surfaces.  

For that, we use the parallel flattening method to make sure that the an-
gles between the bottom limit and the coordlines are well repositioned in 
the simulation space. By not considering these angles, the result of a pro-
portional flattening is a vertical straight volume where the initial orienta-
tion of the grid is completely forgotten (see Fig. 12(c)). 

Finally, to minimize the error, we repeat the adjustment by considering 
that the top remains in position (with the same sets of support nodes). 

 
Fig. 14. A lithostratigraphic unit in the proportional deposit mode 

Let us detail the steps of the algorithm by using an example:  
1. Let us consider the geographic lithostratigraphic unit of Fig. 14 (only 

some of the coordlines are represented). In the bottom, we choose the 
following set of support nodes: {ABottom, BBottom}. Let {ATop, BTop} be the 
corresponding set of support nodes in the top. Here, ABottom corresponds 
to ATop and BBottom corresponds to BTop; 

2. UnfoldedBottom and UnfoldedTop are respectively the unfolded bottom 
and top of the unit (see Fig. 15(a)). Thanks to the correspondence be-
tween grids and extracted surfaces, we get the vertices AUnfoldedBottom and 
BUnfoldedBottom that respectively correspond to ABottom and BBottom. We then 
use the parallel method in order to reposition ATop and BTop in the simula-
tion space and obtain vertices ATop‘ and BTop‘. The parallel method en-
sure that the angles between limits and coordlines are respected; 

3. AUnfoldedTop and BUnfoldedTop are the vertices which respectively correspond 
to ATop and BTop in UnfoldedTop. We compute a 2D minimization be-
tween the two sets {ATop‘, BTop‘} and {AUnfoldedTop, BUnfoldedTop}.  This com-
putation consists in minimizing a square error by using the Lagrange 
multiplier. We obtain a rotation angle and a translation vector; 

4. We apply the inverse displacement on the whole set of UnfoldedTop 
vertices. Thus, UnfoldedTop is adjusted on UnfoldedBottom in the 2D 
space (see Fig. 15(b)); 
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5. To minimize the resulting error, the steps 2 to 4 are repeated. For now, 
UnfoldedTop remains in position and UnfoldedBottom is adjusted; 

6. The last step consists in elevating the resulting adjusted surface. We 
compute the average z position ZMoyB of all nodes of the folded bottom 
surface which satisfy the support nodes condition 1. Analogously, we 
compute ZMoyT. We finally assigned to each vertex of UnfoldedBottom 
and UnfoldedTop respectively ZMoyB and ZMoyT.  

(a)  (b)  

Fig. 15. Unfolded surfaces adjustment. (a) Using the parallel method to preserve 
angles. (b) UnfoldedTop is adjusted on UnfoldedBottom 

b) Deformation of the lithostratigraphic volume 

The flattening of the whole lithostratigraphic unit (step 4 of the propor-
tional algorithm) is based on the inner limits computation by interpolating 
the unfolded reference surfaces.    

For each couple of corresponding unfolded vertices, a vector is com-
puted and then divided into N equal intervals (see Fig. 16). For each vec-
tor, we have N+1 nodes (the inner nodes are represented in white) which 
correspond to the limits of the flattened grid. The coordlines of the flat-
tened grid are given by these vectors equipped with their corresponding 
nodes. Let us remark that as no nodes are split along the coordlines, no 
particular fault treatment exists. 

 
Fig. 16. A flatten unit in the proportional deposit mode 
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5. Results 

In this section, we sum up our different results in the case of the Alwyn 
field. We present both different results of the flattening methods and some 
preliminary results of geostatistical population and mapping. 

a) The Alwyn field 

(a)  (b)  

Fig. 17. The Alwyn field. (a) Alwyn grid. (b) Corresponding lithostratigraphy 

The geographic Alwyn field (see Fig. 17(a)) is composed of 18 layers of 
1500 cells. Its geological interpretation is represented in Fig. 17(b). Alwyn 
is composed of 3 Tarbert units, 2 Ness units and two additional units in the 
lower part. In the following, we focus first on N2 and T3. 

b) Parallel flattening of the N2 unit 

(a)  (b)  

Fig. 18. Parallel flattening. (a) The geographic N2 unit. (b) The flattened N2 unit 

In Fig. 18(a), we have extracted the N2 unit of the Alwyn grid. We see 
that this unit is crossed with 3 major faults (circled with plain lines). The 
result of the parallel flattening process, which have been computed in a 
few seconds on an Intel Core 2 Quad CPU at 2.83GHz, is illustrated in Fig. 
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18(b). The chosen reference limit was the bottom one. We remark that the 
3 fault have been correctly closed.  

 
Two observations deserve to be pointed out. First, in the result, the top 

limit is not completely flat. This comes from the behavior of the parallel 
algorithm. Indeed, only the reference limit is explicitly unfolded. This fea-
ture is insignificant in the case of thin lithostratigraphic unit. Secondly, 
some differences exist between the shape of the unit in the geographic 
space and corresponding flattened unit (see doted circle in the bottom re-
gion). The footprint of the reference surface is often different from the 
footprint of other limits. Here, some cells of these limits do not have corre-
sponding cells in the reference surface. For now, we choose to deactivate 
these "orphan cells".  

c) Proportional flattening of the T3 unit and application to 
geostatistical population 

The T3 unit of the Alwyn grid is illustrated in Fig. 19(a). In this figure, 
the wells trajectories are also represented. The result of the proportional 
flattening process and the repositioned wells (obtained in a few seconds 
with the same computer configuration) are illustrated in Fig. 19(b). Now, 
in the simulation space, the volume is completely flat. Indeed, both the top 
and bottom reference surfaces have been unfolded. 

In Fig. 19(c), the geographic and simulation spaces have been super-
posed with an enhancement of our readjustment algorithm. This superposi-
tion provides us a visual quality control which allows one to evaluate the 
well trajectory repositioning. We see that the initial wells (in black) have 
been correctly repositioned (see white wells in the simulation space).  

(a)  (b)  

(c)  
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Fig. 19. Proportional flattening. (a) The T3 unit with wells. (b) The flattened T3 
unit. (c) Superposition of the geographic and simulation spaces 

In section 2, we have seen that geostatistical population requires a Car-
tesian simulation grid and corresponding wells properties logs. In Fig. 
19(b), we generate a bounding Cartesian grid around the flattened litho-
stratigraphic unit. Thanks to it and to the repositioning of the wells trajec-
tories, we are now able to generate the geological properties.  

(a)  (b)  (c)  

Fig. 20. Geostatistical population and mapping. (a) Lithofacies population. (b) Po-
rosity population. (c) Mapping of the porosity property in the geographic space 

In Fig. 20(a), we have successfully applied the geostatistical framework 
to populate the flattened Cartesian grid with lithofacies. In the same way, a 
porosity property has been associated to the Cartesian grid in Fig. 20(b). 
Finally, the generated properties have to be plugged back in the geographic 
space. In Fig. 20(c), a mapping and a copy of the porosity have been ap-
plied from the Cartesian grid to the geographic T3 unit (see section 2.d). 

6. Conclusion and future works 

In the scope of the reservoir characterization, the geostatistical simula-
tions allow ones to populate the geographic lithostratigraphic units with 
some rock properties: for instance lithofacies, porosity or permeability. In 
this paper, we have proposed a new methodology which aims at making 
more accurate these geostatistical simulation methods. 

Our methodology is based on an isometric volume flattening process, 
applied on thin lithostratigraphic units. By transporting the studied geo-
graphic lithostratigraphic unit into a flat “simulation space”, we obtain a 
transformation which allows one to also transport the wells trajectories. In 
this flat space, it becomes easy to accurately compute the wells correlation 
distances playing a decisive role in the geostatistical simulation. Moreover, 
we ensure that the deformations between the geographic space and the 
simulation space are minimal.  
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In this paper, we have proposed two isometric flattening methods that 
depend on the deposit mode of the considered lithostratigraphic unit: the 
parallel one and the proportional one. Finally, we have illustrated our flat-
tening-based methodology by populating an actual lithostratigraphic unit.  

Surface extension and hole filling 

The footprint of the reference limits often differs to the one of the other 
limits. See Fig. 21(a) where a whole unit is represented in green while the 
border of the reference limit is drawn in black. We can see that the refer-
ence surface contains some holes. Moreover, this particular surface is 
smaller than the other ones. Indeed, on the border of the unit, some cells do 
not have corresponding cells in the reference surface. These particular fea-
tures of the reference surface can decisively weaken the precision of our 
methodology if some wells are supposed to cross the missing regions. 

(a)  (b)  

Fig. 21. Surface extension and hole filling. (a) Comparison between the shape of 
one reference and the whole unit. (b) Property map resulting from this comparison 

We have developed a specific method to detect the limit of the extension 
of the volume and holes into the reference surface. The result of this me-
thod is a property map associated to the reference limit (see Fig. 21(b)). 
The regions to extend are represented in red, the holes are represented in 
yellow and the exterior inactivated cells, which have to remain inactive, 
are represented in green. The blue cells are correct. 

For now, we simply make inactive the border regions which do not exist 
in the reference limit. In the future, the reference limit will have to be ex-
tended in order to cover the shape of the whole unit. By the same way, the 
hole cells of the reference surface are simply reactivated. This straightfor-
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ward filling solution supposes that the geometry of the inactivated cells is 
correct. In the future, we will have to develop a true geometric hole filling. 

External reference surface 

In this paper, we always suppose that the reference surfaces of consid-
ered lithostratigraphic units exist among the limits of the unit. This hy-
pothesis cannot be generalized to every unit. In Fig. 22, the bottom and top 
limit of the unit are represented with thick black lines while inner limits 
are represented with thin black lines. According to geologist knowledge, 
the deposit mode of such a unit is the parallel one. Nevertheless, neither 
the bottom limit nor the top one can be considered as a reference surface. 
Here, the reference limit is external: for instance the Ref z or Ref 1 one. 
This kind of unit cannot be handled in our current methodology and have 
to be prospected in the future. A solution may consist in using a geological 
modeler in order to provide us with the accurate reference limits. 

 
Fig. 22. External reference surfaces 
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